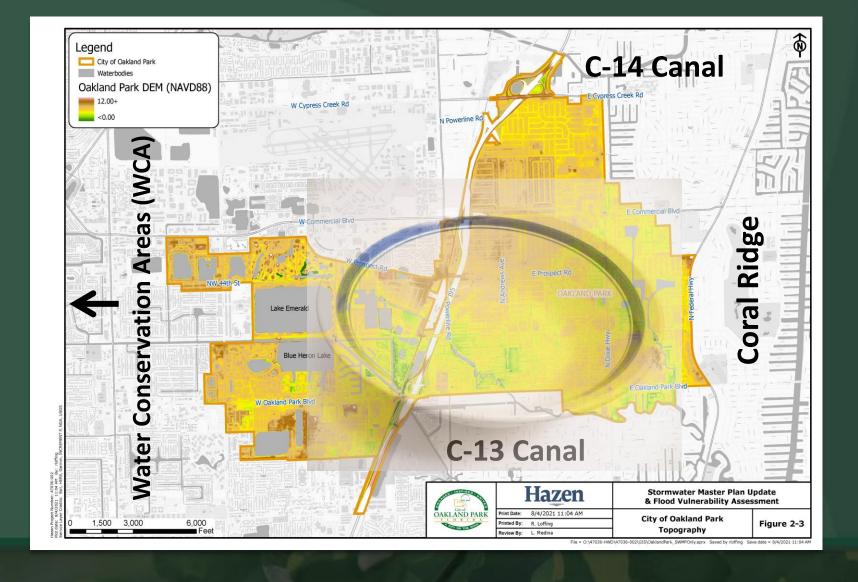
Stormwater Master Plan and Rate Study

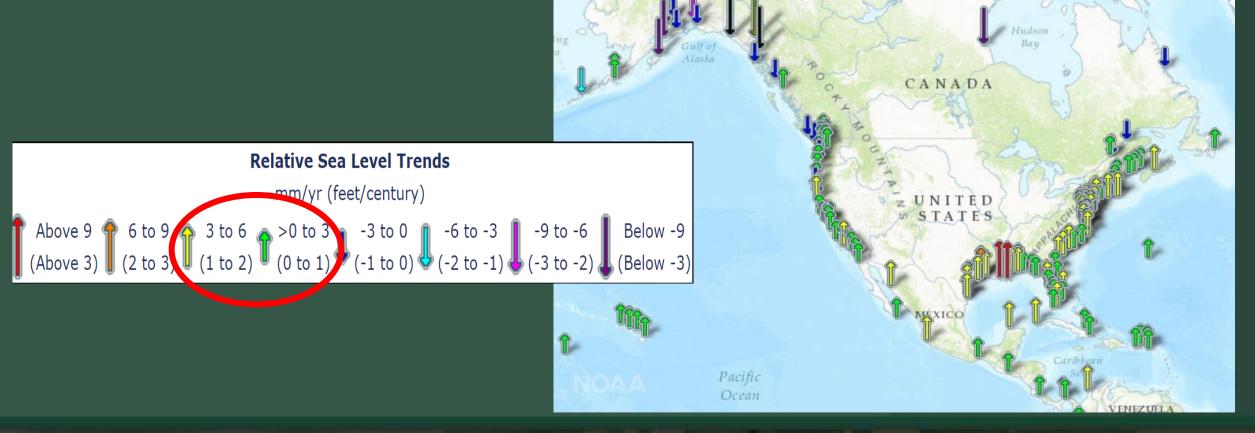
Presentation

June 1, 2022

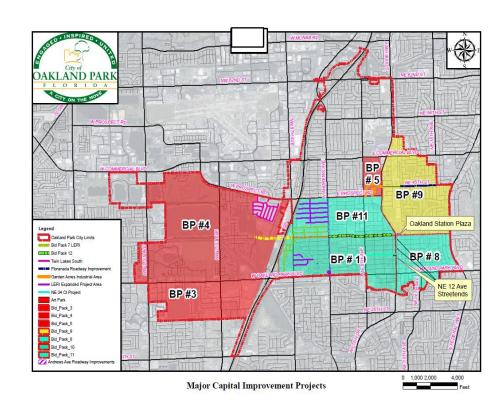
Background


The City operates three Utility Infrastructure System: Water, Wastewater (Sewer), & Stormwater

- Stormwater System = Water from Rain
 - > Swales
 - > Catch Basins Inlets
 - > Exfiltration Pipes
 - > Transmission Pipes
 - > Receiving Waters
 - > Lakes
 - > Streams
 - > Canals


City Elevations

Sea Level Rise Impact on Drainage


Using at least 30 years of observations from 142 long-term water level stations NOAA has calculated mean

sea level trends relative to a fixed place on land.

City Stormwater Infrastructure Improvements

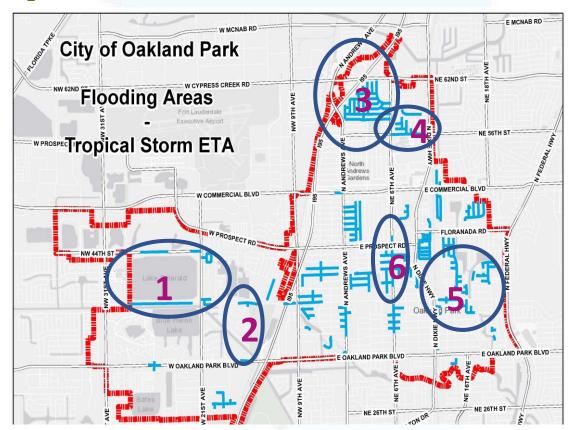
- Bid Pack Projects
- Sewer Lining
- Upgraded Pump Stations
- Swale Upgrades
- Water and Sewer Line Upgrades
- Roadway Projects with Drainage Upgrades
- Dredging
- Stormwater System Cleaning
- Catch Basin Inspections
- Lake Maintenance

Stormwater Master Plan Update

February 5, 2020: Master Plan and Vulnerability Assessment Work Authorization

July 2020:

Vulnerability Assessment completed


November 2020:

Incorporated Hurricane Eta findings into Master Plan

February 2022: Stormwater Rate Sufficiency in conjunction with Master Plan Study

July 2021:

Budget Message includes anticipated rate adjustments for FY 23

Hazen

City of Oakland Park Stormwater Master Plan

June 1, 2022

Background/Purpose of the Study

Project Phases

- Data Collection
- Modeling
- CIP Development
- Funding Source
 Identification
- Permitting Methodology
- Review of Recent Flooding

Stormwater Master Plan Update and Flood Vulnerability Assessment Scope of Services	Task Completed
Stormwater Inventory/Data Collection	✓
As-built Data Conversion & GIS Database Update	✓
Existing H&H Model (development, execution, and post-processing)	✓
Level of Service Analysis	✓
Develop Capital Improvement Projects (CIPs)	✓
Proposed H&H Model (development, execution, and post-processing)	✓
Finalize Recommendations and Cost Estimates	✓
Evaluation of CIP Impacts on Stormwater Utility Rates	✓
Identify Framework for Stormwater Asset Management Plan	✓
Finalize Master Plan Report (and additional deliverables)	✓
Flood Vulnerability Assessment (2020)	✓
Climate Change Adaptation Strategies (2020)	✓
Comprehensive Plan Draft Updates Development (2020)	✓

Data Collection and Modeling

Software & Tools

- ArcGIS
- Arc Hydro
- GWIS
- Model Builder
- ICPR (version 4)
 - 1D Hydraulics w/ Overland Flow Weirs
 - 2D Groundwater Module

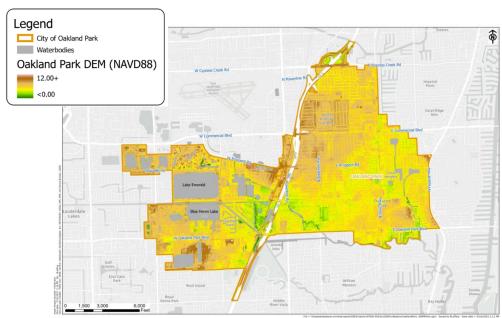
Hazen and Sawyer | **all things water**®

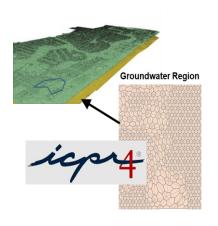
Topography Hydrology Hydrogeology Hydraulics Boundary Conditions Insights

Modeling Methodology and Parameterization

Topography

- Aerials Imagery, BCPA
- Digital Elevation Model (DEM)
- Watershed/Subbasin Delineation


Hydrology

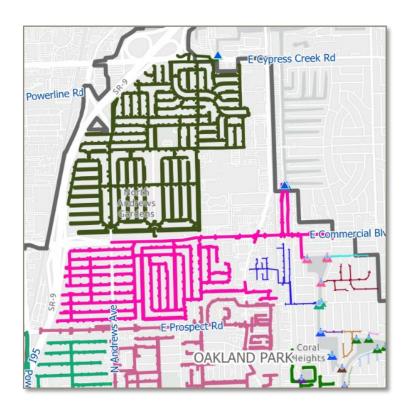

- Rainfall (with Broward County Change Factors)
- Land Use/ Land Cover (Current/Future)
- Soils, NRCS SSURGO database

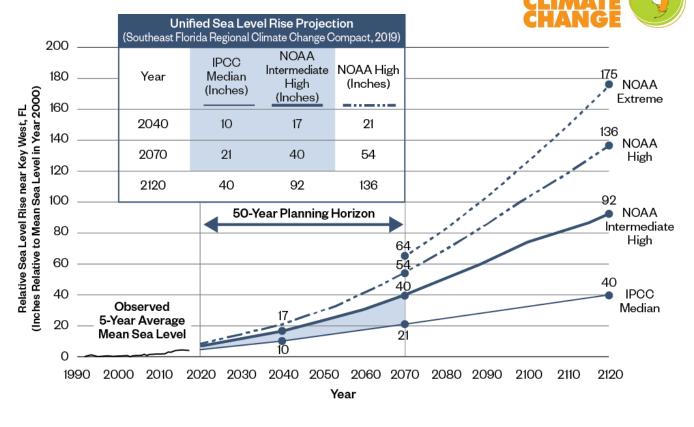

Hydrogeology

- Bathymetry
- Groundwater Parameterization (Current/Future)

Design Storm	SFWMD Mean Depth (inches)	Rainfall Percent Increase	Modeled Rainfall Depth (inches)	
5-year, 24-hour	7.7	9%	8.39	
10-year, 24-hour	8.7	9%	9.50	
25-year, 24-hour	11.1	12%	12.42	
25-year, 72-hour	15.1	12%	16.98	
100-year, 72-hour	18.6	13%	21.07	

opography Hydrology Hydrogeology **Hydraulics Boundary Conditions** Insights


Modeling Methodology and Parameterization

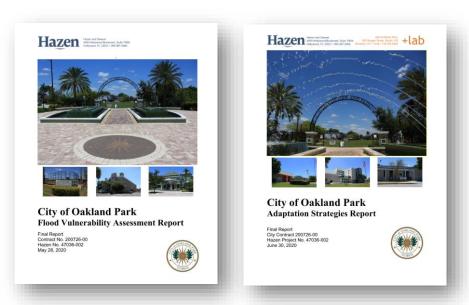

Hydraulics

- As-builts (GIS Conversion)
- Stormwater GIS Database/Atlas
- Drainage System Identification

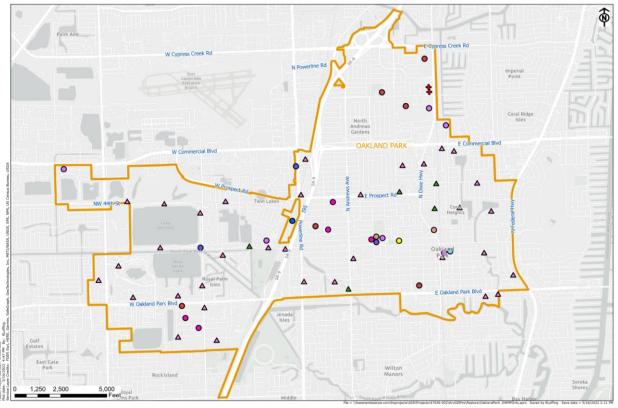
Boundary Conditions

- External Inflows (S-36)
- Tidal Conditions & SLR
- Intra-watershed Nodes

Hazen and Sawyer | all things water®

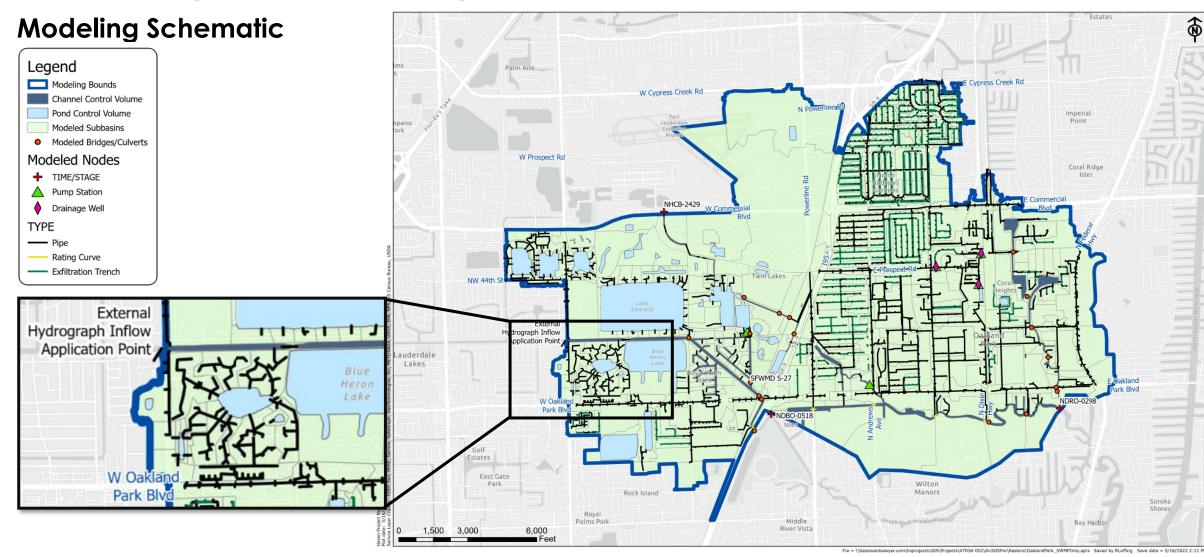

GIONAL COMPACT

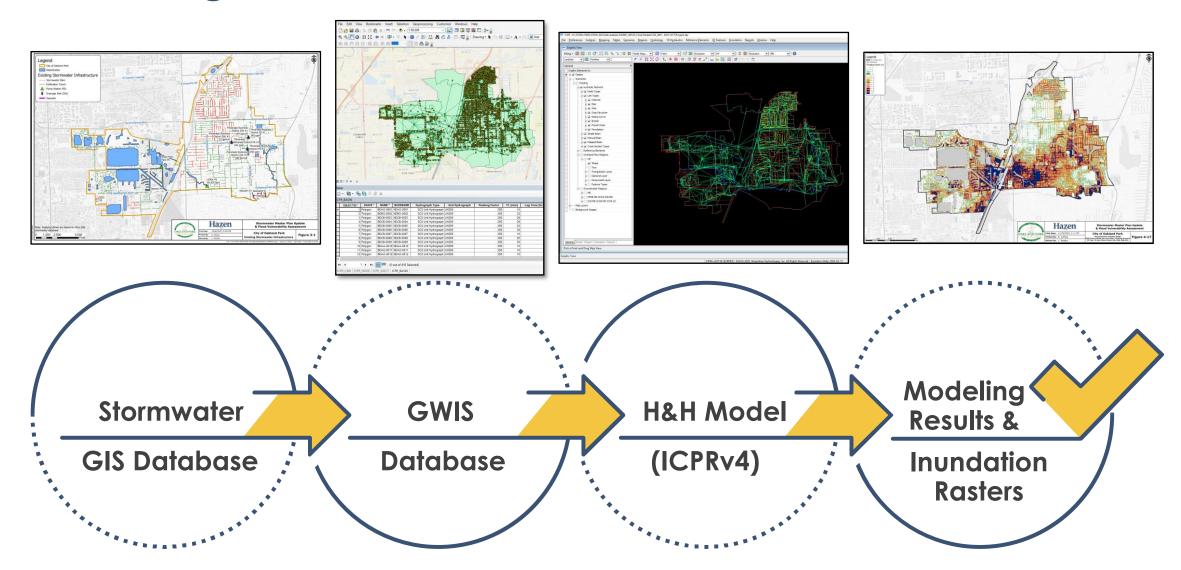
opography Hydrology Hydrogeology Hydraulics Boundary **Conditions Insights**


Modeling Methodology and Parameterization

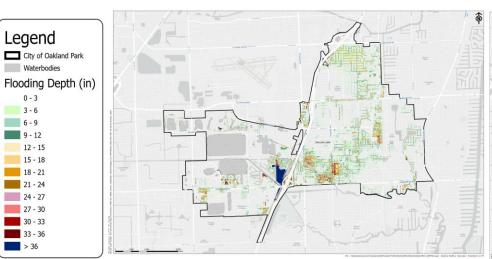
Insights

- Repetitive Losses and Historical Complaints
- City's Internal Knowledge, Records & Photographs
- Critical and Important Facilities
- Flood Vulnerability Assessment and Adaptation Report (2020)



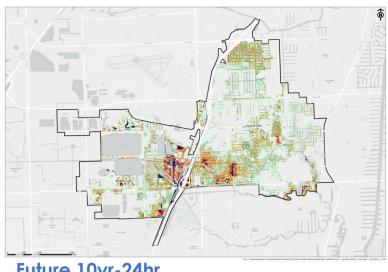

Topography Hydrology Hydrogeology Hydraulics Boundary Conditions Insights

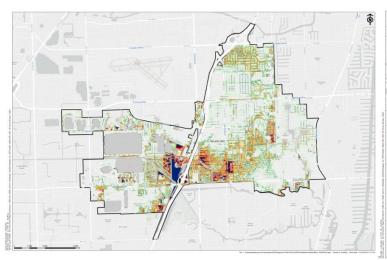
Modeling Methodology and Parameterization

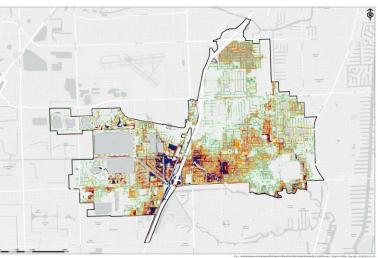


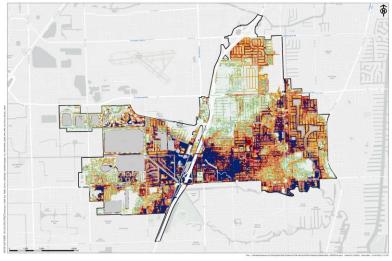
Hazen and Sawyer | **all things water**® 13

Modeling Workflow


Flood Risk Modeling Results


Current 10yr-24hr, 2020 SLR


Future 10yr-24hr 2035 NOAA Intermediate SLR


Future 10yr-24hr, 2060 NOAA Intermediate SLR

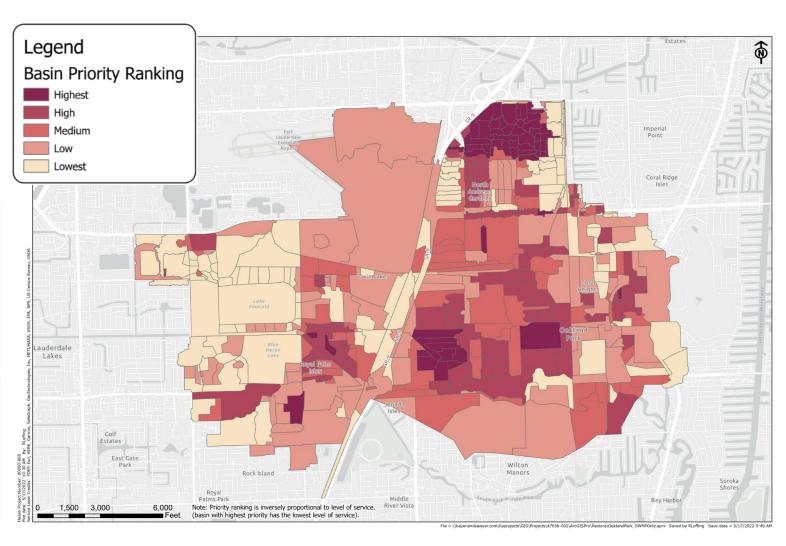
Current 100yr-72hr, 2020 SLR

Future 100yr-72hr 2035 NOAA Intermediate SLR

Future 100yr-72hr 2060 NOAA Intermediate SLR

Identification of Flood Prone Areas

Level of Service Analysis (LOS)

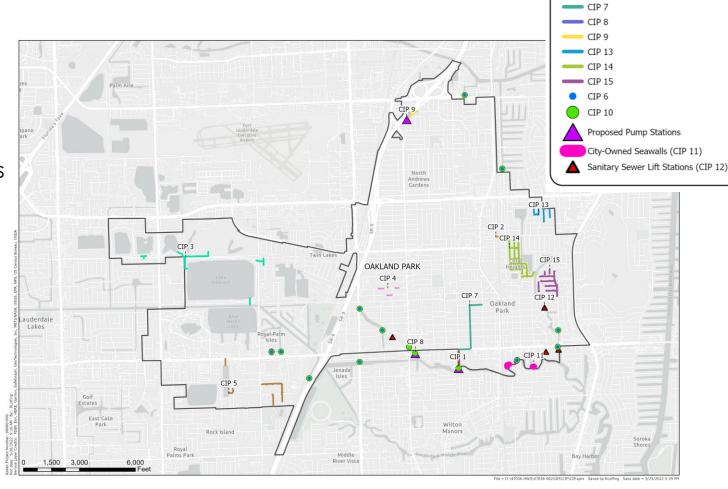

LOS Criteria

 Roadways: 10-year, 24-hour Design Storm

 Structures: 100-year, 72-hour Design Storm

Score Based on Flooded Structures	Performance Parameter	Performance Measure	Weight Factor	
	Critical Structures	Number of structures/acre impacted in 100-year 72-hour flood	1000	
	Important Structures	Number of structures/acre impacted in 100-year 72-hour flood		
	Residential/Non- Residential Structures	Number of structures/acre impacted in 100-year 72-hour flood	750	
	Repetitive Loss Areas	Number of RLAs/acre impacted in 100-year 72- hour flood	875	
	Critical Structures	Number of structures/acre impacted in 10-year 24-hour flood	2000	
	Important Structures Residential/Non- Residential Structures	Number of structures/acre impacted in 10-year 24-hour flood	1500	
		Number of structures/acre impacted in 10-year 24-hour flood	1000	
	Repetitive Loss Areas	Number of RLAs/acre impacted in 10-year 24- hour flood	1500	
	Performance Parameter	Performance Measure	Weight Factor	
	Evacuation Routes	Linear feet(LF)/acre inundated in the 10-year 24- hour flood	20	
	Evacuation Routes	LF/acre inundated in the 100-year 72-hour flood	10	
	Arterial	LE/acre inundated in the 10-year 24-hour flood	5	

	Performance Parameter	Performance Measure	Weight Factor
	Evacuation Routes	Linear feet(LF)/acre inundated in the 10-year 24- hour flood	20
Score Based on Flooded Roads	Evacuation Routes	LF/acre inundated in the 100-year 72-hour flood	10
	Arterial	LF/acre inundated in the 10-year 24-hour flood	5
	Arterial	LF/acre inundated by 6-inches or more in the 100-year 72-hour flood	2
	Collector	LF/acre inundated in the 10-year 24-hour flood	5
	Collector	LF/acre inundated by 9-inches or more in the 100-year 72-hour flood	2
	Local	LF/acre inundated in the 10-year 24-hour flood	1
	Emergency Access (any street)	LF/acre inundated by 3-feet or more in the 100- year 72-hour flood	50



Proposed Capital Improvement Program

CIP Summary

- Total No. of Projects Identified: 15
- Estimated Cost: 48.8M (2021 dollars)
- Estimated Duration: 10 15 years
- Additional Recommendations
- NE 6th Avenue Outfall
- Floranada Pump Stations and Drainage Wells
- Emerald Lakes Basin
- Lake Tahoe
- Interconnecting Drainage System Critical Outfall Structures
- NE 6th Avenue Pump Station
- N. Andrews Ave & Oakland Park Boulevard
- N. Andrews Gardens Study
- 10. Tidal Valves

- 11. Raining and Replacing Flood Barriers 12. Protecting Sanitary Sewer Lift Stations 13. NE 48th and NE 15tyh Way/NE 16th Ave.
- 14. West Coral Lake
- 15. East Coral River

Legend

CIP 2

City of Oakland Park Capital Improvement Program (CIP)

Recommended Projects

Grant Funding Received

Previous

Sleepy River Stormwater Pump Station - \$7.9M

Stormwater Vulnerability Assessment - \$75K

NE 3rd Ave Drainage Improvements (Bid Pack 11) - \$156K

Bid Pack 8 Drainage - \$100K

North Andrews Gardens County Surtax Project. - \$2.0M

North Andrews Gardens County Surtax Project. - \$2.0M NE 6th Ave Drainage Improvements - \$5M NE 13th Ave Drainage Improvements - \$ 1.9M

City of Oakland Park

Stormwater Revenue Sufficiency Study

- Develop a funding strategy to pay for stormwater system operations, maintenance, and capital improvements
 - Specifically, to fund the identified stormwater master plan projects over the forecast period
- Estimate revenue requirements to be recovered from stormwater rates
- Identify the need for rate adjustments over the forecast period, FY 2023 to FY 2027
 - Based on projected revenues, operating expenses, capital requirements, and debt service coverage requirements

Existing Stormwater Assessment

- \$84.00 per equivalent residential unit (ERU)
 - Residential: \$84.00 x number of dwelling units
 - Non-residential: \$84.00 x (impervious area (sq ft) ÷ 1,507 sq ft)
 - Undeveloped: \$84.00 x 0.12 x (total area (sq ft) ÷ 1,507 sq ft)
- Rate has not been adjusted since FY 2016
 - \$72.00 from 2003 to 2015
- School Board stopped making payments in FY 2019, creating a loss of approximately \$200,000 a year in revenue
- Revenues at existing rate projected at \$3.4 million per year

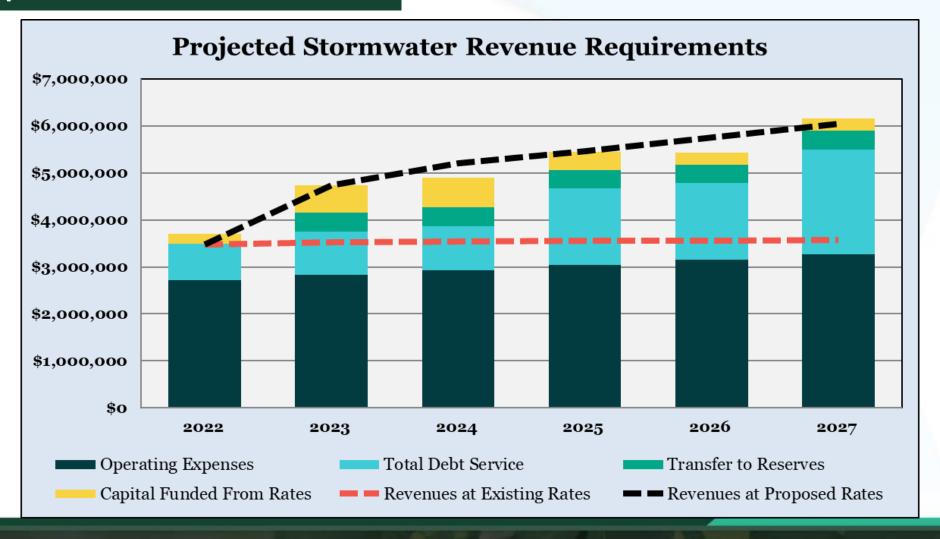
FY 2022 Revenue Sufficiency

Description	FY22 Projected
Gross Revenues	\$3.48m
Operating Expenses	(2.72m)
Debt Service	(0.77m)
Capital	(0.51m)
Surplus/(Deficiency)	(\$0.52m)

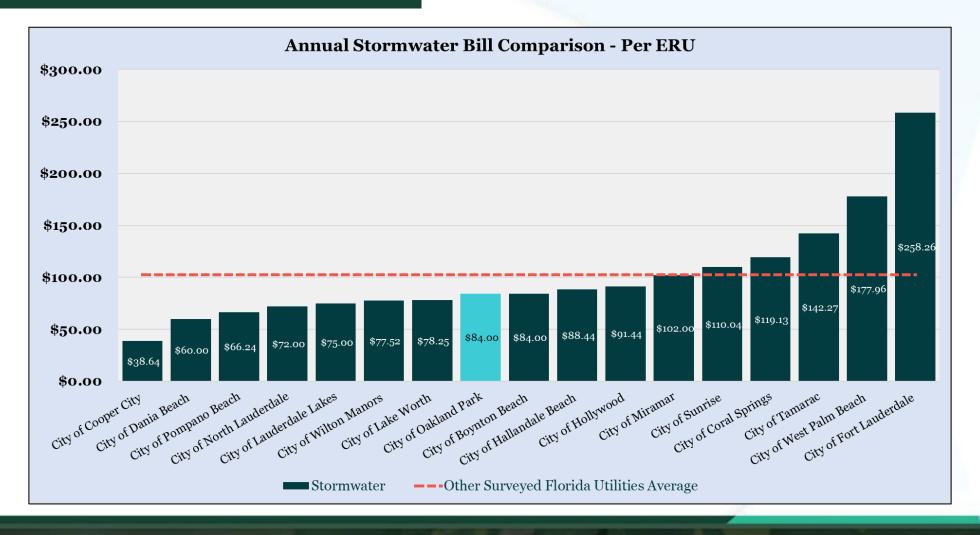
Projected Operating Expenses

- Based on the adopted fiscal year 2022 budget
- Projections for fiscal year 2023 through 2027 were adjusted based on the following adjustment factors:
 - Labor: 5.0% per year
 - Health Insurance: 5.0% per year
 - Repair & Maintenance: 3.0% per year
 - Electricity / Fuel: 5.0% per year
 - General Inflation: average of 3.5% per year
- The projected annual average increase in operating expenses over the forecast period is estimated at 3.75% per year

Capital Improvement Plan


- The City Commission has adopted approximately \$9.1 million in stormwater capital improvements through fiscal year 2026
 - This includes \$1.9 million in prior period carryforward projects funded from operating reserves
 - Public Works Operations Facility \$2.1 million-22
 - NE 13th Avenue Infrastructure Improvements \$2.7 million
 - Lady Lake Trail \$0.3 million
 - Other renewal & replacements projects and vehicle purchases
- Hazen and Sawyer has identified approximately \$48.8 million in master plan projects
 - Staff has prioritized \$20.5 million of these projects to be funded through fiscal year 2027 based on funding availability
 - Debt funding recommended to provide resources needed (State Revolving Loan Fund)

Historical & Proposed Stormwater Rates


Recommended Future Rates

		Current Rate			•		
Fiscal Year	<u>2003</u>	<u>2016</u>	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>
Annual Charge per EDU	\$72.00	\$84.00	\$114.00	\$125.00	\$131.00	\$138.00	\$145.00
Annual Increase		\$12.00	\$30.00	\$11.00	\$6.00	\$7.00	\$7.00
Monthly Increase		\$1.00	\$2.50	\$0.92	\$0.50	\$0.58	\$0.58

Revenue Requirements

Stormwater Rate Comparison

Conclusions & Recommendations

- Consider the proposed rate adjustments and include in the fiscal year 2023 budget.
- The proposed rate adjustments achieve the following:
 - Funds continuing operations, the adopted CIP, and the identified master plan projects
- The proposed rates are recommended to become effective October 1, 2022 and each October 1st thereafter.
- Recommend updating this study every 3 to 5 years.

